Indian Statistical Institute, Bangalore

B. Math. III Second Semester

Differential Geometry II: Mid-Semester Exam

Duration: 3 hours Date: March 06, 2015

Answer any five questions.

Maximum Marks: 100

1. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. For any $p \in \mathbb{R}^n$ there is a canonical identification $T_p\mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ by

$$\sum_{i=1}^n a^i \frac{\partial}{\partial x^i}|_p \mapsto (a^1, \dots, a^n).$$

Show that the differential

$$dL|_p: T_p\mathbb{R}^n \to T_{L(p)}\mathbb{R}^m$$

is the map $L: \mathbb{R}^n \to \mathbb{R}^m$ itself, with the identification of the tangent spaces as above.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = x^3 + xy + y^3 + 1$$

for which points $p=(0,0), p=(\frac{1}{3},\frac{1}{3}), p=(-\frac{1}{3},\frac{1}{3})$ is $f^{-1}(f(p))$ an embedded submanifold in \mathbb{R}^2 ?

- 3. The unit sphere S^n in \mathbb{R}^{n+1} is defined by the equation $\sum_{i=1}^{n+1} (x^i)^2 = 1$. For $p = (p^1, ..., p^{n+1}) \in S^n$, show that a necessary and sufficient condition for $v_p = \sum_{i=1}^{n+1} a^i \frac{\partial}{\partial x^i}|_p \in T_p\mathbb{R}^{n+1}$ to be tangent to S^n at p is $\sum_{i=1}^{n+1} a^i p^i = 0$.
- 4. Let $x^1, y^1, ..., x^n, y^n$ be the coordinates in \mathbb{R}^{2n} . The unit sphere $S^{2n-1} \subset \mathbb{R}^{2n}$ defined by $\sum\limits_{i=1}^n (x^i)^2 + (y^i)^2 = 1$. Show that $X = \sum\limits_{i=1}^n -y^i \frac{\partial}{\partial x^i} + x^i \frac{\partial}{\partial y^i}$ is nowhere vanishing smooth vector field on S^{2n-1} .
- 5. Find the integral curves of the vector field $X_{(x,y)} = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .
- 6. Find all the left invariant vector fields on S^1 .